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The basic features of a molecular orbital treatment suitable for interpretation of the visible/ultra- 
violet spectra of transition element compounds is described. It uses molecular orbitals, derived by a 
VESCF procedure, to form spectroscopic configuration functions, i.e. comNnations of Slater 
determinants that are eigenfunctions of ~2, ~, and the point group operators. A configuration-inter- 
action treatment is then based on these configuration functions. Arithmetic approximations for 
handling the multitude of one- and two-electron integrals are discussed. The possibility of estimating 
Hartree-Fock AO values of these integrals by using STO and Burns exponents is considered. Overall, 
CNDO and MCZDO levels of approximation are explored. Attention is directed towards spectral 
properties other than excitation energies. Particular consideration is given to transition intensities 
and to the Faraday parameters, derived from MCD studies, of the electronic transitions. 

Die grundlegenden Z/age eines MO-Verfahrens, das fiir die Interpretation des sichtbaren und 
Ultraviolettspektrums yon Ubergangselement-Verbindungen entwickelt wurde, werden beschrieben. 
Man benutzt MO's, die sich aus einer VESCF-Methode ergeben, und bildet aus ihnen die spektro- 
skopischen Konfigurationsfunktionen (Kombinationen yon Determinanten mit entsprechender 
r~iumlicber Symmetrie, die zugleich Eigenfunktionen yon ~2 und S~ sind). Die Konfigurations- 
wechselwirkung wird dann auf dieser Grundlage angeschlossen. Arithmetische N~herungen ffir die 
groge Zahl yon Ein- und Zweielektronenintegralen werden vorgeschlagen und die M6glichkeit der 
Absch~itzung yon Hartree-Fock-AO-Werten dieser Integrale fiir Slaterfunktionen mit Burns-Expo- 
nenten in Betracbt gezogen. Die verschiedenen Grade der Ngherung beim CNDO- bzw. MCZDO- 
Verfahren werden besonders im Auge behalten. Das besondere Interesse gilt anderen spektralen 
Eigenschaften als den Ann~iherungsenergien, n~imlich den Werten der ~bergangsintensit~iten und den 
Faraday-Parametern, wie sie sich aus den NCD-Untersuchungen ergeben. 

Description des traits fondamentaux d'un traitement en orbitales mol6culaires des compos6s 
d'616ments de transition, adapt6 ~t l'interpr6tation des spectres 61ectroniques. Ce traitement utilise 
des orbitales obtenues par un proc6d6 VESCF pour construire des fonctions de configuration spectro- 
scopique, c'est ~t dire des fonctions propres de ,~2, Sz et des op6rateurs du groupe de sym6trie ponctuelle. 
Ces fonctions servent de base ~t l'interaction de configuration. Des approximations arithm6tiques 
permettent de manipuler la multitude des int6grales mono- et bi61ectroniques. On envisage la pos- 
sibilit6 d'estimer les valeurs de ces int6grales sur des orbitales atomiques Hartree-Fock en utilisant 
les exposants de Slater et de Burns. Les niveaux d'approximation CNDO et MCZDO sont explor6s. 
On s'int6resse/~ d'autres propri6t6s spectrales que les 6nergies d'excitation. En particulier les intensit6s 
de transition et les param~tres de Faraday obtenus ~ partir des 6tudes MCD sont consid6r6s. 

1. Introduction 

O n e  of  the  m o s t  t a x i n g  p r o b l e m s  of  t h e o r e t i c a l  c h e m i s t r y  is the  d e v e l o p m e n t  

of  an  a d e q u a t e  t h e o r e t i c a l  t r e a t m e n t  o f  t he  e l ec t ron i c  spec t ra  of  t r a n s i t i o n  
e l e m e n t  c o m p o u n d s .  F o r  ce r t a in  aspec t s  of  the  s p e c t r u m  for  h igh ly  ion ic  
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compounds, crystal field theory has proved a useful interpretative scheme but for 
compounds such as the tetrahedral oxyanions, where the degree of metal-ligand 
covalent bonding is believed to be high, a more all-embracing theory is 
essential. 

Much computational labour has been expended on a variety of calculations 
that amount to variations of the extended Htickel method of Wolfsberg and 
Helmholz [1] although it has been known for many years that this procedure 
is unsatisfactory for interpretation of spectra because of the drastic nature of the 
approximations involved (see, for example [2]). 

To give a satisfactory description of an excited state of a molecule it is 
necessary to use a spectroscopic configuration function, i.e. as antisymmetrized 
function that is an eigenfunction of ~2 and Sz and belongs to one of the 
irreducible representations of the molecular point group. For highly symmetric 
ions belonging to point groups such as Ta or Oh the simplest functions that 
acceptably represent many of the excited states are somewhat complex 
combinations of Slater determinants. Furthermore it has repeatedly been shown 
that substantial configuration interaction (i.e. linear combinations of spectroscopic 
configuration functions having common eigenvalues of ~2, of Sz and of the point 
group operators) must be included before the theoretical treatment can hope 
to give quantitative estimates of energies of spectroscopic states. 

To make the computations manageable for transition element compounds 
some approximate form of molecular orbital treatment must be adopted to 
derive the spinorbitals for the spectroscopic configuration functions. The most 
suitable techniques at present available are the CNDO and NDDO all- 
valence electron molecular orbital methods of Pople, Santry and Segal [3, 4] 
and the MCZDO method of Brown and Roby [5, 6]. Brown and Roby 
have also developed the most suitable versions of CNDO and NDDO 
procedures [6, 7]. 

The present series of papers represents an attempt to apply the CNDO and 
MCZDO theories to the electronic structure and ultra-violet spectra of the 
transition metal tetrahedral oxyanions, permanganate and chromate. The NDDO 
theory has not been considered because the very large number of integrals that 
would be involved necessitate the use of a computer with a much larger 
storage than we have available 1. 

Basically this first paper is concerned with describing the methods that we 
have used. In Parts II and III the CNDO and MCZDO based results 
respectively are presented and discussed while in Part IV the effects of the 
electrostatic environment of a crystal lattice are considered. 

2. CNDO and MCZDO Molecular Orbital Methods 

The CNDO and MCZDO molecular orbital methods have been described 
fully elsewhere I-3, 5, 6] and so a short summary and discussion of the 
features of particular relevance to the present treatment of transition element 
compounds will suffice. 

1 T h e  c o m p u t e r  used  for  all o u r  c a l cu l a t i ons  was  a C D C  3200 wi th  32 K store .  
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where 

2.1 The CNDO Approximation 

The expressions for the Hartree-Fock hamiltonian matrix elements are: 

F;AA AA =H~,u +(PAA--�89 + 2 PBB'YAB, 
B:#A 

(1) 

AA F ; v  ~ 1 - z P~, , ,TA, (2)  

F;A? ' AB 1 = Hu,~ - ~Pu,.TAB, (3) 

P A A  = ~- ' ,APuu (4 )  
/z 

and 

i 

n i being the occupation number of the ith molecular orbital and C,, 
coefficient of the basis function, 2,, in that molecular orbital; 7A and 

(5) 

the 

7 ~  
are averaged one centre and two centre electron repulsion integrals. As 
originally formulated [3], it was implied that expressions (1) to (5) related to a 
basis of atomic orbitals represented, say, by Slater functions. However it seems 
preferable [-5, 6] to regard the basis functions, 2u, as L6wdin orthogonalized 
orbitals. The core hamiltonian elements, H ~  and As /- /~,  are accordingly first 
calculated on a Slater basis and the resulting matrix H sl is then transformed 
to the LSwdin basis: 

H = S - ~  HSt S -~ (6) 

and the resultant elements inserted in (1) and (3). 
The elements of H sl at the CNDO level of approximation are given by: 

(H st AA I# + 2 XB VB AA (7) ),u# ~ 0~,u ~ -- 
BCA 

(H S1)AA = 0 (8) 

1 AA ~:: ([-[S1]AB= �89 ,Ira -- vBB)+ XB( VBB VBAA)] } (9)  

where I~ is the valence state ionization potential of atomic orbital )~u on 
nucleus A, X A is the core charge for valence electrons on nucleus A (i.e. 
nuclear charge minus inner shell electrons) and VA RB is the averaged nuclear 
attraction integral for unit charge at A and an electron in a valence orbital on 
nucleus B. 

We have carried out calculations within the framework of the CNDO method 
in which the core hamiltonian matrix has been evaluated directly to the first 
order in S in a L6wdin basis. This has the effect of simplifying the calculation 
but further aplSroximations have to be made. The expressions for the L6wdin 
basis core hamiltonian matrix elements are: 

HFAff = (/_/S1]AA 
', ,-- Jtz# , 

nAB �88 BB BB AA = - v ~  )+xs (v~  - v ~  )]. 

(10) 

(11) 
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2.2 The MCZDO Approximation 

The expressions for the Hartree-Fock hamiltonian matrix elements in the 
M C Z D O  approximation are: 

F,~*.*=Hu*.A+ ZAP,~,.[(,u#I2o-) - �89 + Y', Z~Pa.~,;.~, (12) 
~,~ B~A A 

F AA = H AA + ~ P~  [(/~v 12o-) - �89 [2v)], (13) 

FAf_ AB 1 - -  H . ~  - ~-P~TAB �9 (14) 

It is to be emphasised that if the basis set contains only s or p orbitals then the 
one centre matrix elements simplify considerably (see formulae in [5]). 
However when d-orbitals (or orbitals of higher /) are involved some non zero 
hybrid repulsion one-centre integrals occur. The fact that such integrals must 
be taken into account does not seem to have been generally realised. For 
example Zauli does not give any formulae for them, or even mention them, 
in his tables of one-centre integrals for principal numbers up to three. 
Although small in magnitude (<  1 eV) they must be included in methods more 
elaborate than the CNDO method in order to maintain rotational invariance 
and to insure proper degeneracies 2, especially for excited electronic states 
(c.f. Ref. [2]). 

To obtain the core hamiltonian matrix on a Slater basis ready for 
transformation to the LSwdin basis via (6) the following expressions now apply 
according to the M C Z D O  approximation: 

/-it S1)AA= - I . +  ~ XB<~IPBI~>, (15) 
BCA 

/4" SI )AA = l~a[ v> (16) - -  .,,., ~ XB<~I , 
B~A 

(HSl)A~ s = �89 - Su~(I " + I~) + XA<,I VAI'~> + x~<pl [?BI ~>} + Y~ Xc<~l Vcl'r>, (17) 
C~A,B 

where Vc is the coulomb attraction operator for unit positive charge. The three 
centre integrals arising in (17) have been evaluated using the finite Ruedenberg 
approximation [9] : 

~){B ~, �89 ~v ..~ 2As"~X#XA}a (18) 

3. Evaluation of Atomic and Molecular Integrals 

The methods suggested by Pople, Santry and Segal [3, 4] for empirically 
evaluating some of the integrals in CNDO calculations depend upon the 
availability of accurate ab initio calculations on appropriate small molecules. 
For  several reasons substantially different approaches are necessary for transition 

z When making approximations to integrals, or neglecting integrals one must take care to 
preserve within the overall calculation the symmetry of the system being considered. For systems of 
high symmetry (e.g. T d or Oh) this can imply some subtle relationships, particularly between two- 
electron integrals. 
19" 
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Table 1. Constant ~ b, c, in VESCF valence state ionisation potential data 

Atom Core Orbital a b c 
charge 

Chromium +6 3d -0.511750 21.558i00 
4s -0.070350 7.168440 
4p 1.916500 - 13.097100 

+ 7 3d -0.4405 22.365 
4s -0.1055 8.7012 
4p -0.1130 8.7096 

+4 2p 0.0828 19.7376 

Manganese 

Oxygen 

-68.075500 
11.341100 
60.695100 

-66.9434 
12.0179 
10.1319 

-23.3640 

metal complexes. Firstly a greater range of valence orbitals is involved - -  up 
to 4s, 4p and 3d, and no appropriate  ab initio molecular calculations are 
available. Secondly the high core charges and appreciable net charges that arise 
in the complexes call for greater recognition of the effect of intramolecular 
environment on atomic orbital properties (the "variable electronegativity" 
concept). Thirdly, it seems desirable to revise the original C N D O  parameter  
scheme in any case [7]. 

In the present calculations the valence state ionization potentials have been 
evaluated from atomic spectroscopic data via the VESCF scheme [10, 11] as a 
quadratic in the effective nuclear charge Z , :  

Iu = a Z  2 + b Z .  + c (19) 

where the empirical constants a, b, and c, derived from spectroscopic data, 
are listed for manganese, chromium and oxygen in Table 1. 

The VESCF procedure for adapting other one-centre integrals to the intra- 
molecular environment was also employed. However  the effect for two-centre 
integrals was small enough to be neglected. 

With the exception of Iu and monocentr ic  electron repulsion integrals for 
the ligands, all other integrals were evaluated theoretically using Slater functions, 
usually via a computer  program based on the C-function method [12, 13] 3. 
The orbital exponents have been derived from Burns's rules [14], the advantage 
of these in comparison with Slater's rules having been discussed previously 4 
[7, 15]. 

Because of the approximate  nature of Slater orbitals, values of integrals 
evaluated by use of these functions do not exactly agree with those derived by 
use of, say, Har t ree-Fock orbitals [16]. Furthermore,  for some considerable 
time it has been considered that, at least for two-electron integrals, es, en 
Hart ree-Fock orbitals are not the opt imum basis functions because of electron 
correlation effects. 

3 Two-centre nuclear attraction integrals of the type (#A[ I~B[ V A) cannot be expressed in terms 
of C-functions. However they are readily evaluated from the master formulae given by Ruedenberg, 
Roothaan, and Jaunzemis [12]. 

4 There is a further advantage, not discussed in Ref. [15], with the n = 4 quantum shell. Slater's 
rules, unlike Burns's, require that the principal quantum number be replaced by an effective principal 
quantum number. This is non-integral for n = 4 and makes the evaluation of integrals considerably 
more difficult. 
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It has been shown in the case of n-electron calculations [17] that perhaps 
the most satisfactory values of two-electron one-centre integrals are obtained by 
using 

(##l ##) = I. - A. (20) 

where A. is the electron affinity for orbital # and I u and A. are evaluated- 
from atomic spectroscopic data. This procedure has been used in the present 
calculations for the oxygen 2p orbitals but insufficient atomic data are 
available for (20) to be used for the various manganese and chromium 
orbital integrals. Also there are difficulties in dealing with one-centre integrals 
of the type (##[vv). 

Instead we have adopted the technique of determining scaling factors that 
convert integral values derived from Slater functions to corresponding values 
derived from Hartree-Fock functions: 

j H F  = k j S l  (21) 

where i s ,  is some integral derived using Slater functions and jHF the 
corresponding Hartree-Fock value. We have examined the various values of k 
in the hope of discerning general trends so that the actual molecular VESCF 
calculations could be performed using js~ and predetermined values of k. 

For these studies we have used approximate Hartree-Fock orbitals derived 
by Richardson and his co-workers for transition metal atoms [18, 19]. 
Table 2 gives the values of one-centre Coulomb repulsion integrals involving 
the 4s, 4p, and 3d atomic orbitals for the neutral, +1 and +2 ions of 
manganese. The ratios of Richardson/Burns s values, expressed as percentages, 
are also given. Similar results were obtained for the corresponding integrals of 
vanadium, chromium and iron. The percentage ratios fall into two distinct 
groups - -  those involving 4s and/or 4p atomic orbitals and those involving 
only d atomic orbitals. The percentage ratios show little variation within a 

Table 2. Ratios of  approximate Hartree Fock to Burns values for one centre integrals for transition 
metal atoms (expressed as percentages) 

Integral Atom Neutral  a tom + 1 Ion + 2 Ion 

sip ~ d b sip d sip d 

Coulomb Mn 92.4_+0.7 92.2+0.8 116.6+0.6 99.9+_0.7 123.2+_0.7 104.8+0.6 
V 106.5_+2.9 89.6_+0.8 126.8_+1.1 98.5_+0.8 132.1_+1.2 105.1_+0.7 
Cr 98.6-t-1.6 90.9___0.8 122.1-t-1.0 98.9• 127.6_+0.9 105.3-+0.7 
Fe 86.5_+0.7 93.1-+0.8 112.1-+0.6 99.2-+0.7 119.7-t-0.5 105.0_+0.6 

Nuclear Mn 94.4-+1.8 109.0 c 119.7 c 113.6 r 130.9 ~ 116.1 c 
attraction V 108.1 _ 1.1 107.6 c 131.3 c 113.5 ~ 141.6 r 117.7 ~ 

Cr 100.5+0.8 108.5 c 126.2 ~ 113.5 ~ 136.3 ~ 117.1 c 
Fe 88.9+3.3 109.2 ~ 115.1 ~ 112.5 c 126.1 c 115.5 c 

a Integrals involving 4s and/or  4p orbitals on atom. 
b Integrals involving 3d orbitals only on atom. 
c Only one integral - therefore standard deviation not possible. 

s Values of integrals obtained by using Slater functions with orbital exponents derived by Burns's 
rules will for simplicity be referred to as "Burns values". 
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group the values usually being within _ 1% of the average. In Fig. 1 a plot of 
average percentage ratio against charge for the two groups of integrals is 
shown and clearly emphasizes the two groups 6. The Hartree-Fock correction 
factor can be made a function of the charge on the atom or, perhaps more 
accurately, as a function of the smallest orbital exponent involved in the 
integral. In actual calculations however, it was found preferable to use fixed 
factors based on estimates of the values of the self-consistent charges. 

To preserve the correct degeneracies etc. within the SCF calculation 
(see 2.2) certain relationships must be preserved between various hybrid, 
exchange and coulomb one-centre integrals. For example 

4(xy, xy[zZ, z2)-(yz, yz[zZ, z2)-3(yz, yz[x2, xz)+2l/3(yz, yz[xZ, z2)-~O (22) 

where the symbols designate the various d-orbitals of a degenerate set. 
A simple way, adopted in the present calculations, to preserve such 

relationships is to use the same scaling factor for all monocentric integrals 
involving members of the same degenerate set of atomic orbitals. 

Scaling factors for the two-centre coulomb repulsion integrals can be 
evaluated in an analogous manner to that described for the one-centre 
Coulomb repulsion integrals. Results are shown in Table 3. The central 
atom-oxygen integrals fall roughly into two classes - -  those involving 4s or 4p 
orbitals on the central atom and those involving 3d orbitals on the central atom. 
The percentage corrections are small (-~ 3 %) and furthermore show little change 
with varying charges on the atoms (<  1%). 

6 Richardson 4s wave-functions are not  available for the + 1 and + 2  ions of transition metal 
atoms. We have assumed that  the same percentage ratio relationship between the 4s and/or 4p con- 
taining integrals holds for these ions as was found for the neutral atoms. 
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Table 3. Ratios of  approximate Hartree Fock to Burns values for two centre integrals for the Mn-O 
system a, R = 1.629 A (expressed as percentages) 

Integral Neutral Mn atom Neutral Mn atom Neutral Mn atom 
Neutral O atom - 1 O ion + 1 O ion 

sip b d c sip b d r sip b d c 

Coulomb 94.7-t- 1.3 98.8+_ 1.5 94.1_+ 1.3 - -  - -  - -  

Overlap 117.2 +_ 35.9 140.4 _+ 77.2 157.7 + 52.5 131.3 _+ 84.2 95.8 + 29.9 141.0 • 66.4 

Nuclear 
attraction 
(flA] VB [ VA) 131.2-1-47.0 100.7___ 2.3 . . . .  
(~AIVAI~B) 50.0+-69.3 121.2_+47.7 29.5• 11214-+ 51.5 53.2-t-42.5 122.3 • 
(#AI VBI2~) 114.1_+48.4 158.6+-69.6 119.3--+37.9 154.7-+65.8 95.3+29.3 157.8_+69.4 

�9 Analogous results were obtained for other systems e.g. O-O and Cr-O. 
b Integrals involving 4s and/or 4p orbitals on Manganese atom. 
c Integrals involving 3d orbitals on Manganese atom. 

Hart ree-Fock correction factors for one-electron integrals can be determined 
similarly. For  two-centre integrals it was found that a separate scaling factor is 
required for each integral. Two-centre integral values obtained using either 
Burns or approximate Hart ree-Fock wave-functions can be used in calculations 
if the VESCF procedure is not applied to these integrals. An interpolation 
procedure is necessary to obtain the approximate Hartree-Fock values if the 
model used to evaluate the two-centre integrals has fractional charges on the 
atoms. We have investigated the use of both sets of values. 

4. Comparison with Experimental Data 

In subsequent papers we shall report a series of calculations by both C N D O  
and M C Z D O  methods, designed to explore the sensitivity of the results to the 
various assumptions made. However comparison of various experimental 
properties with calculated values is important  for assessing the ultimate 
suitability of the theoretical methods for interpreting properties of transition 
element compounds. For  uncharged molecules various ground state properties, 
such as dipole moments,  may usefully be considered. However many of the 
interesting transition element compounds, including MnO~ and CrO~-  consid- 
ered here, are charged and then the most appropriate ground state properties 
are inaccessible. The main experimental testing devolves upon the ultraviolet 
spectra. 

4.1 U l t r a v i o l e t  S p e c t r a  

Both the permanganate and chromate ions have a series of bands in their 
near ultraviolet/visible spectra, the oscillator strengths of which are all less than 
0.1 [20-22]. There are several possible explanations of the presence of these 
bands. Firstly, they could be due to symmetry-allowed transitions which 
accidentally have relatively low intensity. Secondly, they could be due to 
symmetry-forbidden transitions which have gained intensity by vibronic-coupling 
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Table 4. Spectroscopic state functions for tetrahedral molecules 

Orbital Spectroscopic Linear combinat ion of singly excited configurations b 

Promotion ~ state Row 1 Row 2 Row 3 

a I ~---a I 3,1A1 a~al c 

e ~--a 1 3'iE ale  I a le  2 

tl ~ a i  3, iT 1 a l t  I alt~ alt~ 

t2 ~ a i  3'1T2 alt~ alt~ alt~ 

e ~-e 3'IA 1 ~ 1  ( d e l + e = e = )  

1 3A A 2 ~/~ ( ei e2 _ e2 e 1) 

3,1E 1 (e i e2+e2e i )  1 (el el _ e= e2) 

t 1 ~ e  3,1T t T ( e l  - 2tii_~/~eitl ) l (e2t~ +V~eit~ ) e2t~ 

3'iT= 21 (eltl +l/~e=tl) _ l  (elt~_]/~e2t~) elt~ 

t 2 *--e 1 ,1  1 ~ 2 1" l ( e l t ~ _ l / ~ e 2 t ~  ) elt~ 3'1T1 T I ,  e t 2 + V 3 e  t2l 

3 ' 1 7 " 2  21(e2 t~-V3e~t~)  - l  (e2tZ2+]/3e't29) e2t~ 

t 1 +- t 1 3,~A 1 1 ( t l t  I 2 2 + t i t  0 l /~  + tl tl 3 3 

1 "1  1 2 2 "  3,iE l/~1 (tltl +t~t~_2tst~) - ~  (tltl-tltO 

3,1T i I I ( t i t  1 - -  t l t l )  - - t l t l )  ~/~ v ~ ( t ~ t 3  t 32  i s  a i 

3,1T 2 1 1 1 3 3 1 l~ ~ (t~t~ +t~t~) ~ ( q q  + t l t l )  

1 
- -  t i tt) 1/2 (tlt~ 2 

1 (tlt~+t~tl) 

The one-electron orbital p romot ion  x ~ y  gives the same states as the one-electron orbital 
promotion y--* x. The exact forms of the molecular orbitals referred to by their symmetry designations 
in this table are given in Table 1 of Part II of this series of papers. 

b The singly excited configuration d d  k represents the promotion of an electron from a molecular 
orbital 0 of symmetry  c to a molecular orbital 0 of symmetry  d. The superscripts i and k signify the 
row of the irreducible representation to which the molecular orbital belongs. 

~ A singly excited configuration is described by a combinat ion of two Slater determinants for a 
singlet state and by a single Slater determinant  for one of the triplet states. 

d d  k= 7 2  ([OiOaO202...OiOk[ + 101010202..-%0il) 

for a singlet state. 

cl d k = 101010202. . .  OiOk] 

for the S~ = 1 component  of the triplet state. 
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O r b i t a l  S p e c t r o s c o p i c  L i n e a r  c o m b i n a t i o n  of s ingly exci ted c o n f i g u r a t i o n s  b 

P r o m o t i o n  a s t a te  R o w  1 R o w 2  R o w 3  

t 2 ~ - t  i 

t 2 * - t  2 

2 2  3 3  3,~A 2 1 ( t l t i + q t 2 + t i t 2 )  

3 , iE  1 2 2 3 3  ] ~  ~/6 ( t ~ t ~ + t l t z - 2 t i t z )  v -  ( t~t~-t2t2) 

3 , i T  1 1 2 3  3 2  1 1 3  3 1  [/2 (tlt2 +t l t2)  ]/2 (tlt2 +tl t2)  

3,1T 2 1 2 3 3 2 1 i 3 3 1 
( t l t 2 - -  t l t 2 )  [ / 2  ( t i t 2 - -  t i t 2 )  

3,iA i 1 1 1  2 2  3 3  ~r~ (t2t2 + t2t2 d- t2t2) 

a , iE  1 1 1 2 2 1 --  - -  + t 2 t2 -- ~/2 (t2t  2 _ t 2 t 2  ) ~/6 (t12tl 2 2 2 2t3t 3) 

3 , iT  1 1 2 3 3 2 1 __t2t2) ] / 2  (t2t2 -- tzt2) ~/2 (t~ta~ 3 1  

3,1T 2 1 2 3 a 2 1 (t~t32+ta2t~) [ / ~  (t2t2 + tzt2) 

1 (tlt2 + t2t~) 

1 
t I t2) ] ~  (tl t  2 _  2 i 

1 1 2  2 1  
(t2 t2 -- t 2 t2) 

1 
_ 7  (tlt~ +t~t~) 
V2 

with high intensity symmetry-allowed transitions above 6eV. Thirdly, but 
considerably less likely, they could be due to spin-forbidden transitions which 
have gained intensity by spin-orbital coupling with high intensity symmetry- 
allowed transitions above 6eV, or fourthly, they could be due to some 
combination of all of the preceding possibilities. Clearly then, for any meaningful 
interpretation of the ultra-violet spectra of these ions not only must the energies 
of all singlet and triplet transitions be considered but also their intensities. 

4.1.1 Excitation Energies 

In a previous paper [-2] we have discussed the importance of including 
electron interaction directly in excited state calculations on the permanganate 
ion. As pointed out in Sect. 1, this means that appropriate combinations of 
Slater determinants belonging to the different representations of the Td point 
group must be extracted by the usual group theoretic procedures. The results 
are given in Table 4. The energy values relative to the ground state for these 
eigenfunctions can be derived by standard procedures and, of course, depend 
upon the values adopted for the basic one- and two-electron integrals. 

4.1.2 Oscillator Strengths 

The expression for the theoretical oscillator strength of a transition 
C B ~ A  is 

fAB = 1.085 x 10- u (DAB (23) 
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where ~-is the transition frequency and DAB is the dipole strength 

DAB = G IMAB 12 (24) 

where MAB is the transition moment and G is a factor that accounts for any 
degeneracy in states ~a and ~B. If the usual approximations are made then 

MAB= (~AI~eif, I~B) (25) 

where e? is the dipole length operato r and the summation is over all 
electrons involved in the transition. There are two other formally equivalent 
ways of expressing the transition moment. They are 

MAB = (tPA I ~/ V//] ~B )/A eAB (26) 

and 
MAB ~ (~A~/I( V/~)[ ~B )/(A~AB) 2 (27) 

FV are the dipole velocity and dipole acceleration operators where ~z and 
respectively and A eAB is the energy difference between states ~a and ~B. 

If the spectroscopic configuration functions were exact then use of the dipole 
length, dipole velocity and dipole acceleration operators would lead to identical 
results. However, inaccurate wave-functions may lead to noticeably different 
results. It is a point of current interest and discussion which of the three 
procedures should be used in any particular case 1-23-25]. 

The reason for the different results obtained with inaccurate wave-functions 
is because each operator stresses different spatial portions of the wave- 
functions. The acceleration operator heavily weights the regions close to the 
nuclei while the length and velocity operators weight the regions further out. 
A comparison then of the results obtained using the different operators will give 
some idea of the relative accuracy of the wave-functions being used. As the 
regions close to the nuclei are those for which Slater functions and even 
Hartree-Fock functions are usually least satisfactory the use of the acceleration 
operator is unlikely to lead to satisfactory results. Accordingly, we have 
evaluated transition moments using the dipole length and dipole velocity 
operators only. 

The integrals involved in Eqs. (25) and (26) can be evaluated by expanding 
them in terms of integrals over atomic orbitals. The C-function method 
(see Sect. 3) is suitable for evaluating both the dipole length and dipole 
velocity integrals over Slater-type functions. 

4.1.3 Symmetry Forbidden Transitions 

Under T d symmetry x, y, z transform as the t2 irreducible representation. 
Accordingly, as we are dealing with transitions from a closed shell ground 
state, only 1T 2.-  1T1 transitions are symmetry-allowed. 

We have used the method of Murrell and Pople [26], which is based on the 
Herzberg-Teller [27] vibronic coupling theory, to determine the oscillator 
strengths of symmetry-forbidden transitions. The expression given by Murrel 
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and Pople for the oscillator strength of a symmetry-forbidden transition is for 
a system where all the nuclei are equivalent. For systems where the nuclei are 
no longer all equivalent the expression has to be modified to 

h ~o 
m, ,  [l~#,a~2 co  (28) 

fAB-- 8~2 Y~ ~"Br ~,AC eO(AeB02 
C,# ,a  Y# 

where m~ is the mass of nucleus a, v. is the frequency of the # th normal mode 
in the ground state, C is a state that can couple with state B, f~  c is the 
oscillator strength for the transition ~ c ~ g  based upon the ground state 
equilibrium configuration, e ~ ~o and ec ~ are non-perturbed electronic transition 
energies. 

[h~cl 2 = E Ih~[ 2 = [ (~B I h, [@c) 2 (29) 
~r 

where h~c is the perturbation energy per trait displacement of normal mode Qu 
resulting in the coupling of states ~B and ~c. 

In deriving Eq. (28) the ground state wave-function is assumed to be un- 
perturbed, since any A E will be relatively large. 

h. = (on./~ Q#)o (30) 

where h, is the change in the Hamiltonian which occurs during the normal 
vibration Q,. For small displacements the Hamiltonian h, can be considered as 
equivalent to the interaction energy of a set of dipoles ~ eZ~(~r~/OQu ), 

ff 

where Z,  is the charge and r, the position vector of nucleus a, with the single 
electron density Qnc defined by 

0BC = N ( ~c~OSdx 1 (31) 

where the integration is over N-1 of the N electrons. 
The single electron densities can readily be expressed in terms of atomic 

orbitals and hence the density at each atom and at the mid-point of each 
internuclear axis determined. The interaction of each of these density functions 
with the perturbing set of dipoles is conveniently estimated by replacing the 
distribution with a point charge and evaluating its energy in the field of dipoles. 
The Hamiltonian h~ consists then of the interaction of these point charges with 
dipoles ~ eZ,  r, where r, is the displacement of nucleus tr given bythe normalised 

C7 

co-ordinates. 
The only states ~c which by mixing with state ~B can contribute to the 

intensity of a symmetry-forbidden transition in the permanganate and chromate 
ions are those of symmetry ~T2. Furthermore, the integral given in Eq. (29) will 
be zero unless the perturbing vibration belongs to the same irreducible 
representations of the molecular point group as the density function ~Bc. The 
four normal modes of a tetrahedral molecule belong to the aa, e and t 2 
irreducible representations. The totally summetric a~ vibration does not alter 
the molecular symmetry so that it cannot perturb the equilibrium nuclear 
configuration electronic wave-functions. Consequently, X T 2 states can mix with 



276 R. D. Brown, B. H. James, and M. F. O'Dwyer: 

1T t states via the e and t 2 vibrations and with 1E and aA~ states via the e 
vibrations only. There are no ta fundamental vibrations so that aT2 and tA 2 states 
can couple only a combination vibration. This is a very weak coupling 
mechanism and so none of the bands in the visible/near ultra violet spectra of the 
permanganate and chromate ions will be due to tA2*-~A~ transitions. 

Among the sources of error in the Murrel and Pople theory are: Firstly, the 
displacement dipoles have to be determined from a normal co-ordinate 
analysis which uses the ground state vibrational frequencies; secondly, no suitable 
method for the evaluation of Z~ has yet been found. Previous workers [26, 28, 29] 
have used values for Z~ in the range + 1 to +2. We have assumed the values 
to be + 2 on the central atom and + 1 on the oxygen atoms. 

We have simplified our calculations by using spectroscopic state wave- 
functions and not spectroscopic configuration wave-functions. Consequently, 
the coupling with only one ~T 2 state at a time have been considered. 
Eq. (28) can now be arranged to 

RB c -  fAB _ 8O h V m,, (hU,~) 2 
fo c eO(A~:Bc)Z 8~2 ~ . BC , ,u,o V# 

dK 
~o(A ~ c ) Z  �9 

(32) 

(33) 

We have derived the normal co-ordinates of the permanganate and chromate 
ions in terms of symmetry co-ordinates using Wilson's [30] group theoretical 
method and a modified valence force field [31]. The results obtained were in 
agreement with those published by Krebs, Muller and Roesky [31]. The 
symmetry co-ordinates were expressed in terms of cartesian co-ordinates, the 
required mean square amplitudes of vibration being obtained using the method 
of Nagarajan [32]. The length and direction of the displacement vector for each 
atom in each normal co-ordinate was then readily determined. 

Clearly the theory outlined here will give only approximate numerical 
results. We feel however that the degree of coupling will be overestimated and 
accordingly, the results will have significance only if the degree of coupling is 
predicted to be small. 

4.1.4 Spin-Forbidden Transitions 

Englman [33] has shown that to a good approximation the expression for the 
transition moment of a spin-forbidden transition spin-orbitally coupled to an 
allowed transition is 

( ~ l e f l ~ )  (34) (~kle~l~g) = AesT 

where ~ is the excited state spin orbit coupling constant and A esr is the 
energy difference between the unperturbed singlet and triplet transitions. The 
possibility of observing spin forbidden transitions in the spectra of permanganate 
and chromate will be discussed on the basis of Eq. (34) in Parts II and III. 
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5. Magnetic Circular Dichroism 

The permanganate and chromate ions exhibit a magnetic circular dichroism 
for all transitions below 5 eV [-34]. 

Contribution to the total ellipticity from the transition ~bB,,-~A is given by 

0A~B = Pl  A A ~ B  + P2 (BARB + CAoB/k T) H z (35) 

where Pl and P2 are constants which depend upon the frequency of the 
transition, H z is the static magnetic field and AA_~B, BA~ B and CA~ B are 
parameters, known as Faraday parameters. To avoid correcting for condensed 
medium effects the parameters are usually expressed as ratios of A, B or C to D, 
the dipole strength. 

The Faraday parameter C is zero if ~A has 1A 1 symmetry. Schatz, 
McCaffery, Suetaka, Henning, Ritchie, and Stephens [34] have experimentally 
determined the AID and BID parameters for all bands in the permanganate and 
chromate ultra-violet spectra below 5 eV. They have found that the B parameter 
in all cases is relatively much smaller than the A parameter and can be 
ignored. The A/D parameters for the various bands are significantly different 
from one another for them to be a good test of the spectroscopic configuration 
wave-functions. 

Theoretically the A parameter is given by 

AA+B = d3A y- '  (<tPBI/~zl +B> - -  <+Al /~z l  + A > )  (36) 

x Im(<~a [O/c?xl~B>. <~a I O/~Yl ~g>) 

where d A is the degeneracy of state ~a, O/Or and/~ are the dipole velocity and 
magnetic moment operators respectively and the summation is over all 
transitions degenerate with ~bB+--CA. 

The appropriate integrals were evaluated using Slater type wave-functions, 
with Burns self-consistent ground state orbital exponents, and the C-function 
method. The integrals were not scaled. 
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